
TOWARDS AD-HOC GPU ACCELERATION OF PARALLEL EIGENSYSTEM

COMPUTATIONS

Michael T. Garba and Horacio González–Vélez

IDEAS Research Institute

Robert Gordon University

Aberdeen, UK

Email: {m.t.garba,h.gonzalez-velez}@rgu.ac.uk

KEYWORDS

GPU, Eigensystems, CUDA, Parallel Computing, Com-

putational Linear Algebra

ABSTRACT

This paper explores the early implementation of high-

performance routines for the solution of multiple large

Hermitian eigenvector and eigenvalue systems on a

Graphics Processing Unit (GPU). We report a perfor-

mance increase of up to two orders of magnitude over the

original EISPACK routines with a NVIDIA Tesla C2050

GPU, potentially allowing an order of magnitude in-

crease in the complexity or resolution of a neutron scat-

tering modeling application.

INTRODUCTION

Eigenvector and eigenvalue determination are a recur-

rent problem in computational modelling applications

for which a number of broadly accepted libraries ex-

ist. However, as increasingly elaborate models become

of practical value to scientific and engineering applica-

tions, the demands of solving larger systems typically

require high performance computing with large high-

performance clusters or supercomputers.

As an emerging parallel architecture for high-

performance computing, the Graphics Processing Unit

(GPU) has the potential to enable a new generation of ap-

plications for desktop machines and small clusters. Orig-

inally intended for intensive high-end 3D graphics and

gaming, GPUs have demonstrated cluster-level perfor-

mance at a fraction of the cost and energy consumption

of traditional CPUs for certain general purpose applica-

tions. GPU advances are expected to sustain the trend

of Moore’s law that conventional CPUs are straining to

maintain.

Conversely, the shift towards GPU computing is a

drastic architectural change that has left a void in the

space of application software and support libraries that

are able to leverage the full capabilities of the platform.

While the solution to computational modelling prob-

lems—which were impractical on the desktop and uneco-

nomical on the supercomputer—may very well become

the dominant GPU applications of the future, effective

GPU programming remains an open problem in compu-

tational science.

With NVIDIA’s CUDA, AMD’s Firestream, Mi-

crosoft’s DirectCompute and the vendor-neutral OpenCL

platform, significant resources are being directed towards

developing a supporting ecosystem for GPU computing

in the form of libraries, specifications, and tools that are

at various levels of maturity.

Driven by our own immediate need for high perfor-

mance solvers for modelling Inelastic Neutron Scattering

(INS), this paper describes the early stages of our appli-

cation of GPUs to the solution of Hermitian eigensys-

tems, based on the EISPACK library and using the CUDA

platform. Our work may arguably shed some light on a

computational problem of even wider significance than

the intended modelling application.

BACKGROUND

EISPACK, and its successor LAPACK, provide extensive

linear algebra routines in mathematical and scientific

computing. Originally developed in the US in the sev-

enties (Smith et al., 1976), the accuracy and numerical

stability of EISPACK has been established through diverse

application over the past 30+ years, leading to a number

of developments in the field (Dongarra et al., 1998).

We have developed an initial high performance paral-

lel version of SCATTER (Roach et al., 2007), a new INS

modelling tool, that has demonstrated linear scaling up

to 1024 nodes on the Huygens prototype supercomputer

in the SARA facilities in the Netherlands (Garba et al.,

2010). Central to this parallel version are phonon mode

calculations carried out with the support of EISPACK.

However, not every SCATTER deployment may have ac-

cess to major supercomputing installations and it is clear

that more affordable computational power is required on

the lower end of the computing scale (Bethel et al., 2011).

Furthermore, GPU modules are becoming a frequent

presence in high performance computing platforms and

the application of SCATTER to progressively more com-

plex models on larger installations will require reason-

able usage of these resources. As a result, an efficient

GPU implementation of the most computationally inten-

sive parts of the SCATTER routine will alleviate this im-

perative demand. Of particular interest are solvers for

the class of Hermitian eigensystems that occur in INS

Proceedings 25th European Conference on Modelling and
Simulation ©ECMS Tadeusz Burczynski, Joanna Kolodziej
Aleksander Byrski, Marco Carvalho (Editors)
ISBN: 978-0-9564944-2-9 / ISBN: 978-0-9564944-3-6 (CD)

modelling, arising from the quantum mechanical deter-

mination of phonon modes and their associated scattering

contributions (Roach et al., 2010).

For numerically intensive tasks, GPUs have substan-

tial computing potential (Tomov et al., 2010a). How-

ever, complex control flow with conditional branching

and thread divergence incur a noticeable performance

penalty (Nvidia Corporation, 2009). To achieve reason-

able performance benefits, it is necessary to augment tra-

ditional development techniques with low-level knowl-

edge of the underlying GPU architecture (Kirk and Wen-

mei, 2010).

The Compute Unified Device Architecture (CUDA) is

NVIDIA’s platform for GPU computing, providing com-

pilation tools, libraries and a runtime system. CUDA al-

lows the execution of kernels, written in CUDA C, on the

GPU device. A kernel executes as a configurable grid of

independent thread blocks that may contain up to 1024

threads in second generation CUDA devices.

A Single Instruction Multiple Thread (SIMT) abstrac-

tion, where threads within a block execute identical in-

structions and may operate on different memory loca-

tions, allows fine-grained data parallelism within blocks

and task parallelism at kernel level (Nickolls et al.,

2008). Thread blocks are divided into warps of 32

threads. For a given block, only one of these warps is

scheduled to execute on the actual hardware at any given

instant.

GPU memory is hierarchically organised and indepen-

dent from host memory. Global Memory, high-latency

and high-bandwidth DRAM, is the primary memory

available on the device and is accessible by all executing

kernels as well as for host to GPU data transfer. Limited

high-speed Shared Memory, essentially a user-managed

cache, exists locally on each streaming multiprocessor to

allow the explicit avoidance of expensive off-chip global

memory accesses. Also present are register, texture and

constant memories with various performance character-

istics.

Memory transfer contention and bandwidth represent

the predominant bottlenecks to GPU performance. A

critical performance consideration is that high cost global

memory operations can be performed simultaneously or

coalesced for a thread warp if certain access constraints

are satisfied. In practice, significant efforts are usually

dedicated to optimising memory access patterns of this

kind by what is frequently a hit-or-miss approach in-

volving conflicting trade-offs to maximise the compute

to global memory access (CGMA) ratio (Kirk and Wen-

mei, 2010). The GPU architecture and best practices for

achieving good performance are extensively documented

in the CUDA platform.

METHODS

Despite a number of emerging GPU numerical libraries,

no open library for eigensystem analysis is available to

completely meet the application requirements. There-

fore, a basic port of the required functional subset of

EISPACK to the GPU has been undertaken.

Admittedly, the more modern LAPACK—which has

largely superseded EISPACK—may have formed a func-

tionally superior basis. However, the inherent architec-

tural complexity and reliance on an efficient BLAS im-

plementation implies a long-term effort that the imme-

diacy of our requirements does not allow. The MAGMA

library is such an effort that is in the early stages of pro-

viding hybrid multicore-CPU/GPU implementations of

LAPACK routines (Tomov et al., 2010b).

The challenges of achieving efficient performance on a

GPU architecture may justify the extended effort of cus-

tom algorithms developed specifically for the strengths of

the platform (Vzquez et al., 2010). However, we main-

tain the original algorithms of the legacy EISPACK imple-

mentation for several reasons:

(a) This work is motivated by a very practical applica-

tion for which the EISPACK eigensolver has proven

adequate.

(b) As EISPACK has been in production use for nearly

40 years, the numerical characteristics and accuracy

have been established by exhaustive application and

testing.

(c) The problem of creating a data-parallel GPU version

is conceptually similar to that of creating a vector-

processor version of the EISPACK routines. A vector

implementation was created for for the IBM 3090-

VF by Cline and Meyering (1991).

(d) While alternative algorithms used in LAPACK may

possess superior cache usage characteristics and per-

formance in modern processor configurations, they

provide this at the expense of software complexity

and reliance on an efficient BLAS implementation.

The EISPACK implementation provides the ch driver

for double-precision Hermitian matrices and its three

subroutine dependencies shown in Table 1.

IMPLEMENTATION

As EISPACK is implemented in Fortran, these routines re-

quire source-level translation with the f2c tool (Feldman,

1990) into equivalent C sources for compatibility with

the C-based CUDA SDK (Figure 1). Thence, the sub-

routines from Table 1 have served as the basis for the

creation of three functionally equivalent GPU kernels.

Performance gains emerge as data-parallel intensive

loops are distributed between cooperating threads in a

block and synchronisation constructs inserted to avoid

race conditions between thread warps. These loops are

identified from source-level line-profiling on the origi-

nal CPU version of EISPACK, the assumption being that

CPU performance is strongly indicative of potential per-

formance bottlenecks in the GPU kernels. This is a nec-

essary workaround as CUDA profiling tools provide rel-

atively basic functionality.

EISPACK

(Fortran)

EISPACK

(C)

 f2c

ch wrapper

(C)

GPU Kernels

(CUDA C)

Figure 1: The Fortran EISPACK source translated to C

with f2c forms the basis of the CUDA Port

A number of thread blocks independently handle the

solution of multiple eigensystems in parallel. In our im-

plementation, a thread block or cooperative thread array

(CTA) is mapped to an input problem set, allowing paral-

lelism at both independent block and cooperative thread

levels.

Some performance optimisations applied include:

(a) Asynchronous transfers to and from the Host over

multiple streams allow concurrent kernel execution

and overlapped I/O.

(b) Algorithm reorganisation for improved coalesced

memory access. Transposed matrix layout in some

subtasks is necessary to achieve higher memory

transfer bandwidth.

(c) Improved register memory usage by the elimination

(or reuse when appropriate) of extraneous register

variables to improve GPU occupancy and facilitate

latency hiding on the streaming multiprocessors.

(d) Use of explicit caching in shared memory to limit

costly global memory accesses.

(e) Empirical determination of launch configuration by

trial and error. While, the guidelines recommend that

thread blocks sizes should be multiples of a warp to

allow latency hiding for multiple warps, it is neces-

sary to determine actual optimal block sizes by test-

ing. The different kernels performed optimally at

distinct block dimensions.

RESULTS

Performance evaluations are carried out on a 64-bit Dell

Precision T7500 Server with 4 Intel Xeon 2GHz CPU

cores, 4GB RAM and a NVIDIA Tesla C2050 GPU with

a PCI express interface running Version 3.2 of the CUDA

SDK on 64-bit Ubuntu 10.04 Linux.

The second generation NVIDIA Tesla C2050 GPU is

designed specifically for scientific and numerical com-

puting applications. 14 streaming multiprocessors (SM),

Routine Description

htridi Reduction of complex Hermitian matrix to

real symmetric tridiagonal matrix via unitary

similarity transformations.

tql2 Eigenvalues and eigenvectors of symmetric

tridiagonal matrix by ql method.

htribk Eigenvectors of complex Hermitian matrix

by back transformation of corresponding real

symmetric tridiagonal matrix.

Table 1: Relevant Hermitian Eigensystem routines in

EISPACK

Parameter Value

Number of CUDA Cores 448

Frequency of CUDA Cores 1.15GHz

Double Precision floating point perfor-

mance (peak)

515 Gflops

Single Precision floating point perfor-

mance (peak)

1.03 Tflops

Total Dedicated Memory 3GB GDDR5

Table 2: NVIDIA Tesla C2050 GPU Specifications

each providing 32 streaming processors (SP), offer 448

parallel cores in total. While many earlier GPUs com-

pletely lacked double precision support, the Tesla GPU

provides improved double-precision floating point per-

formance.

The execution times for 1000 N -order input matrices

with EISPACK and LAPACK on a single CPU core and

on the GPU are shown in Figure 2. GPU times are col-

lected via the platform timers and are inclusive of mem-

ory transfer overhead.

Within a critical window (N = 512 − 2048), the cur-

rent GPU routine yields performance increases of be-

tween 50− 100× over the previous EISPACK implemen-

tation, a result of performance gains at both thread and

block levels. As the matrix order increases, the GPU

memory is able to accommodate fewer matrices to pro-

vide any block-level performance advantage and execu-

tion resources begin to idle. Therefore, the scalability of

the approach is restricted for higher values of N by the

hard limit that memory places on GPU occupancy despite

the still-observable benefits of thread-level parallelism.

The superior LAPACK cache behaviour delivers consis-

tently higher performance over EISPACK for larger val-

ues of N. While equivalent routines in both LAPACK and

EISPACK are of storage order O(n2), LAPACK reuses the

same input matrix memory for output and is therefore

more memory efficient.

DISCUSSION

For the intended neutron scattering application, good per-

formance within the critical window will be sufficient to

allow an order of magnitude advance in the size, com-

plexity or grid refinement of the INS models.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 128 256 512 1024 2048 4096

E
x

ec
u

ti
o

n
 T

im
e

(s
ec

o
n

d
s)

Matrix Order N

CPU EISPACK
CPU LAPACK

Tesla C2050 - EISPACK

32

314

5154

71504

651953

5824843

30

228

1712

13750

107150

829380

4

20

124

781

7998

612060

Figure 2: Execution time for 1000 double precision Hermitian matrices of order N with (i) the current EISPACK CPU

implementation, (ii) LAPACK on CPU and (iii) the test EISPACK implementation on a NVIDIA Tesla C2050 GPU.

In the long-term, it is expected that subsequent GPU

models will offer improved memory characteristics and

deliver higher performance. Furthermore, the need for

migration to LAPACK as larger systems are modeled is

evident.

The intention of this work has been to create an effi-

cient GPU port that meets the need created by SCATTER

and that is based on the established numerical EISPACK

code. We anticipate the emergence of standard numer-

ical libraries for the GPU that are based on efficient al-

gorithms oriented towards the particular strengths of the

platform. A very recent release of the MAGMA library

introduces a Hermitian eigensolver for hybrid multicore-

CPU-GPU configurations that is based on an alterna-

tive divide-and-conquer algorithm. The suitability of this

LAPACK-based version is being evaluated. However, our

initial observations indicate that MAGMA performance is

optimised for very large values of N , outside the critical

window identified previously.

CONCLUSIONS

The particular applicability of INS to the study of nano-

materials has led to increasing popularity for structural

determination in the materials science community. Li-

braries of mathematical routines remain the foundation

of these applications and it is important to establish and

maintain efficient implementations. We have demon-

strated the substantial performance potential of the GPU

in INS modelling and similar applications that rely on

significant numerical computation.

The current implementation remains in the tuning and

testing stages and performance improvements are prob-

able. Testing and deployment in a multi-GPU cluster

configuration is intended during re-integration of the new

eigenanalysis routines with GULP, the SCATTER host ap-

plication (Gale and Rohl, 2003), before simulations with

actual INS models are evaluated.

Further work will investigate other computationally in-

tensive aspects of INS modelling that will benefit from

GPU acceleration. This includes derivation of the dy-

namical matrix and nearest-neighbour search.

The challenge of determining optimal parameters for

launch configuration and performance tuning presents an

opportunity to apply heuristic techniques. Ultimately,

we seek to investigate deployment of the neutron scatter-

ing program for complex models in large dynamic GPU-

accelerated heterogeneous environments and techniques

for improving co-operative CPU-GPU throughput. This

will combine CPU, GPU-EISPACK and, prospectively,

MAGMA in an adaptive framework that optimizes for

performance by balancing between alternative execution

paths. Multiple implementations of GPU kernels, opti-

mised for various problem scales, become a means of

achieving this performance balance.

ACKNOWLEDGEMENTS

The authors would like to thank NVIDIA Corporation

for the donation through the Professor Partnership pro-

gramme of the GPU Tesla equipment employed in this

work. Our appreciation to Julian Gale of Curtin Univer-

sity, Australia and Daniel L. Roach of Salford University

for making the GULP and SCATTER source code available

REFERENCES

Bethel, E., van Rosendale, J., Southard, D., Gaither, K., Childs,

H., Brugger, E., and Ahern, S. (2011). Visualization at Su-

percomputing Centers: The Tale of Little Big Iron and the

Three Skinny Guys. IEEE Computer Graphics and Applica-

tions, 31(1):90–95.

Cline, A. K. and Meyering, J. (1991). Converting eispack to run

efficiently on a vector processor. Technical report, Pleasant

Valley Software, Austin, Texas.

Dongarra, J. J., Duff, I. S., Sorensen, D. C., and van der

Vorst, H. A. (1998). Numerical linear algebra for high-

performance computers. SIAM, 2nd edition.

Feldman, S. (1990). A Fortran to C converter. In ACM SIG-

PLAN Fortran Forum, volume 9, pages 21–22. ACM.

Gale, J. and Rohl, A. (2003). The general utility lattice program

(GULP). Molecular Simulation, 29(5):291–341.

Garba, M., González-Vélez, H., and Roach, D. (2010). Parallel

computational modelling of inelastic neutron scattering in

multi-node and multi-core architectures. In IEEE HPCC-10,

pages 509–514, Melbourne. IEEE.

Kirk, D. and Wen-mei, W. (2010). Programming massively par-

allel processors: A Hands-on approach. Morgan Kaufmann

Publishers Inc. San Francisco, CA, USA.

Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008).

Scalable parallel programming with CUDA. Queue,

6(2):40–53.

Nvidia Corporation (2009). NVIDIA CUDA C Programming

Best Practices Guide. Manual Version 2.3. Available

from: http://developer.nvidia.com/ (Last Ac-

cessed: 1 Feb 2011).

Roach, D., Ross, K., and Gale, J. D. (2010). The application

of coherent inelastic neutron scattering to the study of poly-

crystalline materials. Physical Review B. Submitted for pub-

lication.

Roach, D. L., Gale, J., and Ross, D. (2007). Scatter: A New In-

elastic Neutron Scattering Simulation Subroutine for GULP.

Neutron News, 18(3):21–23.

Smith, B. T., Boyle, J. M., Dongarra, J., Garbow, B. S., Ikebe,

Y., Klema, V. C., and Moler, C. B. (1976). Matrix Eigen-

system Routines - EISPACK Guide, volume 6 of LNCS.

Springer-Verlag.

Tomov, S., Dongarra, J., and Baboulin, M. (2010a). Towards

dense linear algebra for hybrid GPU accelerated manycore

systems. Parallel Computing, 36(5-6):232–240.

Tomov, S., Nath, R., Ltaief, H., and Dongarra, J. (2010b).

Dense linear algebra solvers for multicore with GPU acceler-

ators. In IPDPS 2010 Workshops, pages 1–8, Atlanta. IEEE.

Vzquez, F., Fernndez, J. J., and Garzn, E. M. (2010). A new

approach for sparse matrix vector product on nvidia gpus.

Concurrency and Computation: Practice and Experience.

AUTHOR BIOGRAPHIES

Michael T. Garba has a background in Electrical

Engineering and holds a Masters degree in Computing

from Robert Gordon University, Aberdeen where he is

currently working towards a PhD. His research interests

are in high performance parallel computing, emerging

parallel architectures and computational nanoscience.

His email is m.t.garba@rgu.ac.uk.

Horacio González–Vélez. is a lecturer with the Robert

Gordon University, where he conducts research in paral-

lel and distributed computing. He holds a doctoral degree

in informatics from the University of Edinburgh, where

he was also a research fellow. He has held different po-

sitions in marketing and systems engineering at Sun Mi-

crosystems and Silicon Graphics. His recent research has

been funded by the EPSRC and NESTA in the UK, the

European Commission, and NVIDIA. His VCard can be

found at http://member.acm.org/˜horacio.

